

WHERE TRADITION MEETS INNOVATION

White Paper

Ashburn, Loudoun County, VA Data Center Growth and Energy Constraints

Ashburn Supervisor, Mike Turner October 20, 2025

The opinions and recommendations in this presentation represent those of the author alone and in no way represent those of any other Board member, the Loudoun County Board of Supervisors or Loudoun County Staff. Furthermore, these opinions and recommendations have no legal authority nor are they in any way legally binding on any Loudoun County employee.

Data Centers: Key Milestones

- 1993 Update of 1972 Zoning Ordinance: No mention of data centers
- 1990's (latter half): Metro Area Exchange-East established in Loudoun County; AOL HQ fiber laid
- 2000 Zoning Administrator determination: Data Centers are viewed similar as office buildings in the 1993 Zoning Ordinance. Office parks hot trend.
- 2001: General Plan (land use) updated
- 2003: Revised 1993 Zoning Ordinance aligns with General Plan: First Mention of Data Centers in Zoning Ordinance
- 2008: Loudoun Economic Development initiates marketing strategy to recruit data centers on land designated for data centers.
- 2014: ZOAM addressing data center sight, setback, sound
- 2019: General Plan (Comprehensive Plan) Updated

- 2022 May-Aug: Loudoun TLUC holds meetings to map/manage data center growth through CPAM/ZOAM; Dominion announces Wishing Star/Mars
- 2022 Jul: PJM informs Dominion it has underestimated power need; Dominion constrains "data center alley until new lines in 2027^{1, 2}
- 2023: Dominion announces new 500/230 Kv line along Rte. 7 in Loudoun³ and a new 500 KV line from Doubs-Aspen.⁴
- 2023 Dec: Zoning Ordinance updated to 2019 Comp Plan; SPEX for RDP and OP parcels, remove permission for Town Center
- 2023 Dec: PJM accepts NextEra proposal to build 500Kv line as part of the Mid Atlantic Resiliency Link (portion through western Loudoun); significant public resistance⁵
- 2024: Loudoun BOS denies a 2.9 mil. sq. ft./600 Mw data center; finally agrees to the "by right" size of 1.3 mil. sq. ft. and about 100 Mw; JLARC issues data center study stating unconstrained power buildout "very difficult"
- 2025: On March 18th, the BOS votes to permanently end "by right" data centers

Data Centers: Benefits

- FY2025 Estimated \$895M in Data Center Real and Personal Property Tax Revenue; Projected \$940M Operating Budget⁶
- Lowest Real Property Tax Rate in NOVA; About 25% Lower Than Neighbors⁷
- A Data Center Costs the County \$0.04 per \$1 of Tax Revenue⁸
- Most Businesses Cost About \$0.25 per \$1; Homes About Even (CIF Dependent)⁸
- Put Few Cars on the Road
- Very Few Kids in Schools

Exponential Growth in Data Demand

- There has not been a single day in the past 15 years when a data center was not under construction in Loudoun County
- Approximately 200 data centers in 30 square miles, more than anywhere on Earth; NOVA has three times more than the second biggest market in U.S.⁹
- Growth of Permitted data center floor space: 10

```
2016: 8.8 mil. sq. ft.
2017: 10.1 mil. sq. ft. (14.7% increase)
2018: 13.1 mil. sq. ft. (29.7% increase)
2019: 18.3 mil. sq. ft. (39.7% increase)
2020: 21.5 mil. sq. ft. (17.5% increase)
2021: 26.4 mil. sq. ft. (22.8% increase)
2022: 28.1 mil. sq. ft. (6.4% increase)
2023: 31.9 mil. sq. ft. (13.5% increase)
2024: 41.2 mil. sq. ft. (29.2% increase)
2025: 47.0 mil. sq. ft. (14.0% increase)
```

2020-2025 =119% Increase

Exponential Growth in Power Demand:

Power Consumption in Loudoun County:¹¹

```
(chart interpolation)
2018: 1 Gw
                (chart interpolation)
2019: 1.5 Gw
2020: 1.6 Gw
                (chart interpolation)
                (chart interpolation)
2021: 2.0 Gw
                                                      2019-2024 =176%
               (chart interpolation)
2022: 2.8 Gw
                                                      (or almost a
                (chart interpolation)
2023: 3.4 Gw
                                                      threefold increase)
                (actual)^{12}
2024: 4.14 Gw
```

- Same Linear Progression Over the Next 5 Years = 11.43 Gw by 2029
- BUT...Artificial Intelligence (AI) Will Increase Existing Data Rack Power Consumption from 10-14 Kw/rack to 100+ Kw/rack = 30+ Gw by 2029

Four Converging, Co-dependent, Conflicting Trends

Exponential increase in demand for data

Means more data centers; denser racks within existing data centers; Leads to...

Exponential increase in demand for power

Reduced periodically by increased efficiency

Means more transmission lines/generation plants; higher bills; Leads to...

Reduced urgency to meet local climate goals

Means plans to decommission fossil fuel plants are delayed or cancelled; new fossil fuel plants built; Leads to...

Rapid increase in Community resistance to data centers and power infrastructure

Means more pressure on local elected officials to curtail growth, impose stricter performance standards, stop power lines or face election consequences

Loudoun County Current and Planned Transmission Lines 15

- Utility companies are required, by law, to provide power to all customers
- Transmission lines require 100'-180' of easement
- *500 Kv line = 2.1 Gw; 230 Kv line = 750 Mw (distance dependent; est.) 16
- Current transmission lines bringing power into Loudoun County:
 - o From the north: (1) 500 Kv line = 2.1 Gw; (2) 230 Kv lines = 1.5 Gw
 - o From the south: (2) 500 Kv line = 4.2 Gw; (2) 230 Kv line = 1.5 Gw

*Peak capacity about double avg. load

- Total currently coming into Loudoun: 9.3 Gw, but not to "Data Center Alley"
- Data center loop (Aspen/Golden/Mars/Wishing Star)
- Planned new lines bringing more power by 2028 (earliest):
 - New Doubs-Aspen line: (1) 500 Kv line = 2.1 Gw
 - o Mid-Atlantic Resiliency Link: (1) 500 Kv line = 2.1 Gw
 - New Morrisville-Wishing Star line: (1) 500 Kv line = 2.1 Gw
 - Total planned: 15.6 Gw by 2028 (but only 2.85 Gw thru loop added to current 3.4 Gw = 6.25 Gw to

Loudoun County: Current Assessment

Our Realities

- 1. Loudoun power grid is oversubscribed and will likely worsen; PJM/Dominion's planned infrastructure buildout will not keep up with demand; confirmed by JLARC study³²
- 2. Halting new data center construction will slow but not solve our problem
- 3. Rapid increase in power demand for "data center alley" will slow decommissioning of fossil fuel plants and development of "green" power options throughout PJM service area²⁰
- 4. Community resistance to power infrastructure expansion will grow rapidly
- 5. Solar and wind are not viable Loudoun County alternatives
- 6. The 135-yr. old paradigm of power generated by large remote power plants and transmitted across hundreds of miles of transmission lines will not work for Loudoun County

If Unconstrained Power Grid Buildout is "Very Difficult," We Must Lower/Stabilize Demand

Only Three Possible Scenarios:

1. Scenario #1: Artificially Constrain Demand

- A. Utilities "delay but don't deny" applications based on generation/transmission capacity limits (currently happening de facto)
- B. Localities impose efficiency performance standards
- C. State uses sales tax exemption to incentivize efficiency (BAD IDEA!)

2. Scenario #2: Technological Breakthrough

- A. New Nvidia chip uses 1000x less energy to process AI; 2,300% savings
- B. Jevon's paradox; more efficient use of a resource leads to more resource used

3. Scenario #3: Onsite Power Through Microgrids

- A. Happening now; less demand on grid due to onsite power
- B. Lays the foundation for demand response/distributed energy network

What Is a Microgrid?

- Functional Definition²⁴
 - Consists of a large power consumer, an onsite power source, a backup system, regional grid connection
 - o Current examples: large industrial plants; data centers with diesel back up
- Possible Power Sources:
 - Diesel Backup Generators (should be Tier IV; Loudoun currently Tier II)
 - Natural Gas (pipeline)/Renewable Natural Gas (BioMass)²⁵
 - Turbines powered by natural gas
 - Prudent gas turbine use must include Selective Catalytic Reduction
 - Reduces NOX emissions by 95%; CO emissions by 85%; still produces PM2.5 and CO2; still below Tier IV generator standards
 - o Energy Storage Systems (BESS; Graphene Long Duration Energy Storage)²⁶
 - Can replace diesel engines as backup
 - Can also be the primary, independent source of energy

What Is a Microgrid? (cont.)

- Micro/Small Modular Nuclear Reactors (SMR)²⁷
- Micro: 0-20 Mw; Small: 20-100 Mw; Large: 100-1,000 Mw
- There are 75 different variations, some are active since the 1960s
- Light water or sodium fast-reactor
- Hydrogen Fuel Cells²⁸
- Strips H2 atoms from energy source molecules through "reforming" process
- o 95% of hydrogen in U.S. is produced from reformed natural gas
- Source can be Renewable ("green"), Decarbonized ("blue"), Traditional ("gray")
- Carbon-net-zero energy if energy source is not fossil fuel or gas is decarbonized
- Hydrogen fuel cells exist now, just need to go to scale²⁹
- o Depending on manufacturer, each cell is a 10 ft. cube; generates 2.5 Mw
- Probably best for colocation data centers

Choosing a Microgrid Power Source

Power Source Type	Baseload Capacity	Carbon Net Zero	NOX, PM2.5 Free	
Diesel Backup Generators w/SCR		Tier IV	Tier IV	
Energy Storage Systems		~	~	
Natural Gas Turbines w/SCR	~	Tier IV	Tier IV	
Green Hydrogen		~	✓	
Blue Hydrogen				
Small Modular Reactor	~	~	~	

Capacity Factor: Choosing a Microgrid Power Source

- Capacity Factor Definition³⁰
 - Annual hours operated at max. capacity / (8,670 annual hours)
 - Examples:
 - 1 MW max. capacity averaging .5 MW every hour for a year / 8,670 hrs. = 50%
 - 1 MW max. capacity averaging 1 MW over 4,380 hours for a year / 8,670 hrs. = 50%
- Actual Capacity Factors in 2024 of Various Power Sources³¹

2024	Geothermal	Hydroelectric	Nuclear	Biomass	Gas	Solar	Wind
Capacity Factor	65%	34.5%	92.3%	59.0%	59.7%	23.4%	34.3%

Local Best Practices

- Make sure your Comprehensive Plan lists performance standards and your Zoning Ordinance aligns with the plan; make sure both are current.
- Never allow "by right" data center development; require local jurisdiction approval.
- Require Tier IV backup generators.
- Max of 55 Db at the sending property line.
- Conduct a pre- and post-construction professional noise study
- Include both perceived noise and low frequency noise.
- If natural gas turbines are used, require Selective Catalytic Reduction (SCR) and the use
 of ammonia rather than urea as the catalyst. Ensure Tier IV emission standards met.
- Long Duration Energy Storage backup using graphene rather than lithium.
- 500' minimum setback from residential; 1,000' preferred.

Local Best Practices (cont.)

- Consider waste heat recapture (district energy) to heat nearby buildings.
- Require accommodation in site design to enable future incorporation of microgrid elements (baseload power source, backup power source, BESS, demand response system, etc.).
- Work with utilities to encourage them to use advanced conductors to connect the site (Aluminum Conductor Steel Supported [ACSS] at least).
- Talk to utilities about a separate, underground HVDC grid for data centers
- Incorporate Green Building Initiative "Green Globe" ratings into buildings
- Ensure utilities state, in writing, where power will come from and where substations will be located.

White Paper

Resource Page

Ashburn, Loudoun County, VA Data Center Growth and Energy Constraints

Ashburn Supervisor, Mike Turner October 20, 2025

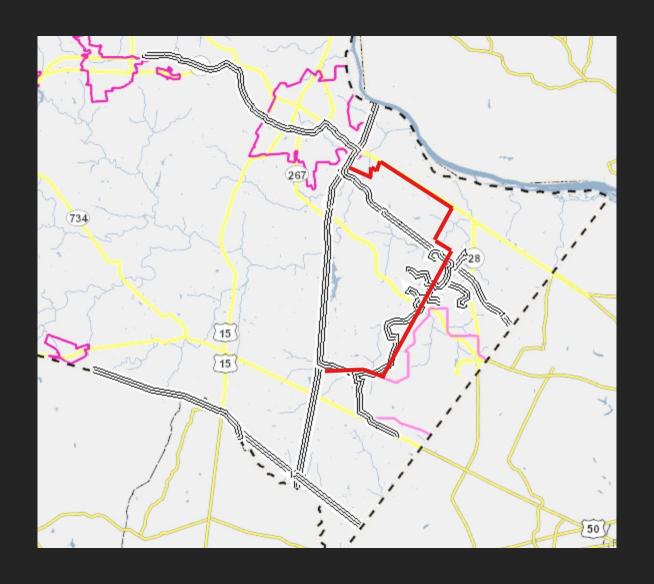
The opinions and recommendations in this presentation represent those of the author alone and in no way represent those of any other Board member, the Loudoun County Board of Supervisors or Loudoun

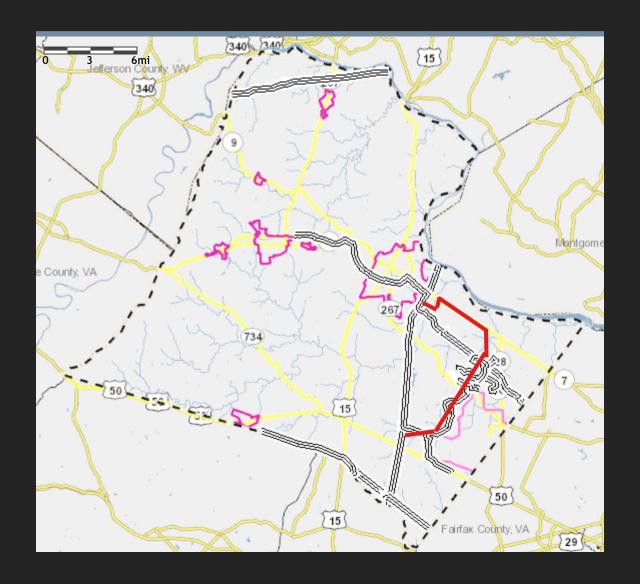
White Paper

Questions?

Endnotes

- 1. https://www.rtoinsider.com/30472-pjm-orders-dominion-immediate-need-projects-load-jump-data-center-alley/
- 2. https://www.pjm.com/-/media/committees-groups/committees/teac/2023/20230110/item-04---data-center-load-planning.ashx
- 3. https://www.loudountimes.com/news/lansdowne-residents-oppose-route-7-transmission-line-proposal/article_46190288-639f-11ee-9908-7722c63f7ffd.html
- 4. PJM. "Transmission Expansion Advisory Committee (TEAC) Recommendations to the PJM Board." PJM. Dec. 11, 2023. Slide 44, last entry in table. https://pjm.com/-/media/committees-groups/committees/teac/2023/20231205/20231205-pjm-teac-board-whitepaper-december-2023.ashx
- 5. PJM advances proposal for transmission line in western Loudoun | 1local | loudountimes.com
- 6. Loudoun County FY2025 Appropriations Resolution; Commissioner of Revenue.
- 7. "City of Alexandria Revenues." City of Alexandria. 2024. Pg. 7-19 table. https://www.alexandriava.gov/sites/default/files/2023-02/Section%2007%20Revenues%20FY24.pdf
- 8. Northern Virginia Technology Council. "The Impact of Data Centers on Virginia's State and Local Economies 5th Biennial Report." April, 2024. Pg. 7.
- 9. United States Data Centers: Top 10 Locations in the USA Dgtl Infra. https://dgtlinfra.com/united-states-data-centers/
- 10. Loudoun County Commissioner of the Revenue, May 31, 2024.
- 11. Abdulsalam, Sami. "Dominion Northern Virginia Area Immediate Need." Slide #2, "Data Center Alley Area Load Growth and Transmission System." Slide #3, "Dominion 2022 Load Forecast." Data interpolated from data center load forecast line (orange). June 7, 2022. https://www.pjm.com/-/media/committees-groups/committees/teac/2022/20220712/item-08---dominion-northern-virginia---immediate-need.ashx
- 12. Joint Legislative Audit Review Commission. "Data Centers in Virginia: 2024." December 9, 2024. Chart on pg. 7. https://jlarc.virginia.gov/pdfs/reports/Rpt598.pdf
- 13. Kimley Horn. "Power Transmission Evaluation of Loudoun County, Virginia. Due Diligence Report." September, 2024
- 14. Abdulsalam, Sami. "Dominion Northern Virginia Area Immediate Need." Slides #8, #9. https://www.pjm.com/-/media/committees-groups/committees/teac/2022/20220712/item-08---dominion-northern-virginia---immediate-need.ashx
- 15. https://openinframap.org/#11/38.941/-77.3388
- 16. Power Engineers. "500 kV AC/DC Extra-High Voltage Transmission Project." Power Engineers. 2024. https://www.powereng.com/library/500-kv-acdc-extra-high-voltage-transmission-project




- 17. Solar.com. "Solar Panel Efficiency Pick the Most Efficient Solar Panels." 2024. https://www.solar.com/learn/solar-panel-efficiency/
- 18. Community Solar Authority. "How Much Land For 1 Mw Solar Farm: A Quick Guide." May 31, 2024. https://communitysolarauthority.com/how-much-land-for-1-mw-solar-farm-a-quick-guide/
- 19. Vineyard Wind. "Avangrid, CIP Announce First Power from Nation-Leading Vineyard Wind 1 Project." Vineyard Wind. January 3, 2024. https://www.vineyardwind.com/press-releases/2024/1/3/cip-avangrid-announce-first-power-from-nation-leading-vineyard-wind-1-project
- 20. Plumer, Brad and Popovich, Nadja. "A New Surge in Power Use is Threatening U.S. Climate Goals." The New York Times. March 14, 2024.
- 21. Plumer, Brad. "The U.S. Urgently Needs a Bigger Grid. Here's a Fast Solution." The New York Times. April 9, 2024. https://www.nytimes.com/2024/04/09/climate/electric-grid-more-power.html
- 22. Berthou, Andreas. "The Benefits of High-Voltage Direct Current (HVDC) Power." EE Power. October 19, 2020. https://eepower.com/technical-articles/the-difference-that-dc-makes/#
- 23. 10 USC, Title 10, Section 2911. https://uscode.house.gov/view.xhtml?req=(title:10%20section:2911(b)%20edition:prelim)
- 24. NREL. "Microgrids." https://www.nrel.gov/grid/microgrids.html
- 25. https://enchantedrock.com/
- 26. ABB. "What Are Battergy Ernergy Storage Systems?" https://electrification.us.abb.com/battery-energy-storage-systems-bess-basics
- 27. https://oklo.com/overview/default.aspx
- 28. https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technology-basics
- 29. Inci, Mustafa. "Future vision of hydrogen fuel cells: A statistical review and research on applications, socio-economic impacts and forecasting prospects." ScienceDirect. October, 2022. <a href="https://www.sciencedirect.com/science/article/abs/pii/S2213138822007871#:~:text=HFC%20technologies%20have%20started%20to%20be%20used%20as,buildings%2C%20industry%20heat%3B%20and%20more%20futuristic%20trend%20implementations
- 30. U.S. Energy Information Agency. "Glossary." U.S. EIA. https://www.eia.gov/tools/glossary/index.php?id=Capacity_factor#:~:text=Capacity%20factor%3A%20The%20ratio%20of,operation%20during%20the%20same%20period
- 31. U.S. Energy Information Administration. "Table 6.07.B. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels" Electric Power Monthly. https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
- 32. Joint Legislative Audit and Review Commission. "Data Centers in Virginia." Commission Draft. December 9, 2024. https://jlarc.virginia.gov/pdfs/reports/Rpt598-2.pdf

33. World Meteorological Organization, WMO-No. 1368. "State of the Global Climate, 2024." https://library.wmo.int/viewer/69455/download?file=WMO-1368-2024_en.pdf&type=pdf&navigator=1

