THE MOST INCREDIBLE THING WE'VE ENGINEERED IS OUR TEAM

Wireless Infrastructure

The History, What We Know Today, The Future

ISO 9001:2015 Certified | Employee-owned Since 1988

Wireless Infrastructure

- "Wireless Support Structures" Towers monopoles, lattice, guyed, roof tops, water tanks, small cells
- Antennas Broadcasts the wireless signal
- Coaxial Cables Provides connectivity from equipment to the antennas
- **Remote Radio Heads** Boosts antenna strength
- Equipment Cabinets, Enclosures, or Shelters
 - Radios, network demarcations, batteries and emergency generators.
- **Connectivity** Copper, microwave, fiber

Macro Self Support Tower

Macro Monopole

Macro Roof Top Installation

Macro Water Tank Installation

Why Are Wireless Support Structures Needed?

- Propagate wireless signal from antenna
- Objectives:
 - Coverage Provide wireless services to areas with marginal, or no existing wireless signal.
 - **Capacity** Provide additional wireless services to areas where customer demand exceeds the capacity of the network.
 - Important Capacity of a wireless antenna location is limited by the equipment. Sometimes capacity issues can be overcome by adding equipment and frequencies, but when those paths are exhausted, a new location is needed.

History of Infrastructure

- Macro networks were built on traditional towers; 100' to 400'.
- Height was needed to get the biggest footprint for the signal.
- At the beginning, only a few towers were needed. The power levels of the signal were high and the footprint was large.
- As customer demand grew, the equipment at the tower locations could not support the demand, thus new towers were needed.
- As more towers were added, lower power levels were required for the signal to prevent interference to other tower locations, thus a smaller footprint. This trend created 'holes' in the network.
- This pattern has been repeated for the last 30 years.

History of Technology

<u>Signal:</u>

- Analog (AMPS) Advanced Mobile Phone System (Launched 1983, phased out 2008)
- Digital
 - 1X (Phase out 2024?)
 - 3G (Phase out 2024?)
 - 4G/LTE
 - Voice over LTE

Devices:

- Bricks
- Bag phones
- Motorola StarTac
- Smart phones

"History" Summary

- Technology constantly evolved
- Infrastructure stayed the same, but required more locations
- Constants:
 - The need for connectivity. Copper, microwave, fiber
 - Wireless support structures for antenna 'locations'

What We Know Today

- Demand for wireless services continues to increase exponentially.
- Traditional macro towers will continue to be built to fill in 'holes' and as needed for capacity.
- Small cell technology will be added to macro network.
 - Smaller structures; 35' to 60'
 - Antennas 6 cubic feet (12" diameter x 4' in height)
 - Equipment 28 cubic feet. (Small refrigerator)
 - Footprint 500' 1,000'
- LTE/4G small cells being built today.
- 5G small cells will be the future.

- Macro network is the 'umbrella' for wireless services. It is robust and hardened.
- Small Cell network is the 'underlayment' of the network.
 - It is closer to the customer, thus providing the capacity that is needed for the network.
 - Provides 'precision' solutions to capacity problems.

Macro Tower vs Small Wireless Facility

Pole Mounted Small Cell

Pole Mounted Small Cell

Roof Top Small Cell

Stealth Small Cell

Micro-Wireless Facility

- Technology is evolving at an exponential rate.
- More antenna locations are needed for the networks. Small cells have been introduced to the mix.
- What has not changed?
 - The need for **fiber** connectivity
 - The need for wireless support structures for antenna 'locations'

- **5G** Protocol for the operation of a radio.
 - Lightning fast speeds for data and devices.
- IoT Internet of things Network of physical devices estimated to be 30 billion by 2020:
 - AV Autonomous Vehicles
 - CAV Connected autonomous vehicles
 - **ITS** Intelligent transportation systems
 - Smart Cities

Future Applications

- Education: Access to information
- Economic Development:
 - Manufacturing Robotics and process efficiencies
 - Agriculture Monitoring and process efficiencies
 - Transportation Autonomous vehicles and ITS
- Health Care: Monitoring devices and reporting
- Municipal Infrastructure: Water/sewer service monitoring systems, parking, traffic control, and public safety
- **Tourism:** Attractions, adventures, events and lodging
- Entertainment: Movies, sports, music, games, etc.

"Future" Summary

- Future technologies will not exist without:
 - Robust fiber networks
 - Antenna 'locations'

 Wireless infrastructure will provide connectivity for the community of IoT.

"The safest prediction is that reality will outstrip our imaginations. So let us **prepare** for not just for what we expect but for what will surely surprise us".*

What will it take to prepare?

- Extensive **fiber** networks
- Multitudes of antenna 'locations'

(*Liberties taken with a quote by Sendhil Mullainathan- Economics Professor at Harvard, Author of Scarcity: Why Having Too Little Means So Much.)

Marshall Pearsall <u>Marshall.Pearsall@KCI.com</u> (804) 347-2572